尚蒙科技无锡有限公司
免费服务热线0510-85386636
您现在的位置: 首页 > 新闻动态 > 内容
产品分类
联系我们

联系人:杨经理

咨询热线:950-4048-3964(免费)

电话:0510-85386636

手机:18001518665

尚蒙科技无锡有限公司

地址:江苏省无锡市新吴区菱湖大道228号天安智慧城A1-602

尚蒙科技(张家港)有限公司

地址:江苏省张家港市杨舍镇华昌路沙洲湖科技园

石墨烯基电子穿戴纺织品商业化取得进展
编辑:尚蒙科技无锡有限公司   时间:2018-01-15

据IDTecjEX公司预测,到2027年电子化的纺织品市场将达到50亿美元。而石墨烯被认为是主导产品。但石墨烯纺织品目前还没有获得产业化。最近,英国曼彻斯特大学的Kostya S. Novoselov教授开发了一种可穿戴的石墨烯基纺织品生产线,其产能可以达到每分钟150米,结果发表在 ACS Nano。

The market for e-textile clothing is forecasted to reach $5 billion by 2027, according to the market research firm IDTechEX. And while graphene is expected to be one of the most prominent materials in wearable e-textiles, currently there is no good way to manufacture graphene-based e-textiles on an industrial scale.

 

 

To address this problem, a team of researchers led by Professor Kostya S. Novoselov at The University of Manchester have developed a scalable process to manufacture graphene-based wearable e-textiles on an . As they write in their paper published in a recent issue of ACS Nano, the method could allow graphene e-textiles to be manufactured at commercial production rates of 150 meters per minute.

"To be able to produce graphene-based wearable e-textiles in scalable quantity at very high speed is a significant breakthrough for the rapidly growing wearables market," first author Nazmul Karim at The University of Manchester told Phys.org. "Our simple and cost-effective way of producing multifunctional graphene textiles could easily be scaled up for many real-life applications, such as sportswear, military gear, and medical clothing."

In the new method, the team has reversed the previous process of coating textiles with graphene-based materials. Traditionally, the textiles are first coated with , and then the graphene oxide is reduced to its functional form of reduced graphene oxide. Instead, here the researchers first reduced the graphene oxide in solution, and then coated the textiles with the reduced form.

By making coating the final step, it becomes possible to use a coating technique called padding, which is currently the most commonly used method of applying functional finishes to textiles in the textile industry. For example, water-repellent and wrinkle-free clothing are often made by padding.

A commercial pad-dry unit can process approximately 150 meters of fabric in just one minute—a huge leap from laboratory methods for coating textiles with graphene that often involve multiple time-consuming steps. As the researchers write in their paper, they believe that using padding to manufacture graphene-based e-textiles will be an important step in moving from R&D-based e-textiles to real-world applications.

In their study, the researchers demonstrated that e-textiles made by a laboratory-scale pad-dry unit exhibited excellent electrical and mechanical characteristics. Tests showed that the reduced oxide forms a uniform coating around the individual cotton fibers, which results in good electric conductivity, tensile strength, breathability, flexibility, and overall comfort of the fabric. The coated fabric also appears to remain electrically conductive after repeated washing cycles.

Graphene-based wearable e-textiles have a variety of potential applications. One possibility, which the researchers demonstrated, is that sensors can be incorporated into the fabric for monitoring physical activity. A sensor mounted on the wrist, for example, can capture mechanical movements such as bending/unbending, stretching/relaxation, and twisting/untwisting. Another possibility is to incorporate flexible heating elements throughout an item of clothing, along with flexible supercapacitors to power them.

"Our future research plan is to look into other 2D materials and utilize their benefits for wearable e-textiles applications," Karim said. "We are also looking to commercialize these technologies in collaboration with industrial partners."

Explore further: Flexible batteries power the future of wearable technology

More information: Nazmul Karim et al. "Scalable Production of Graphene-Based Wearable E-Textiles." ACS Nano. DOI: 10.1021/acsnano.7b05921

 

地址:江苏省无锡市新吴区菱湖大道228号天安智慧城A1-602  电话:0510-85386636  传真:0510-85384339  电子邮箱:info@solmontech.com

版权所有:尚蒙科技(张家港)有限公司 苏ICP备17013239

关键词:防雨剂|防雾剂|纳米银|纳米铂金|空气净化器|价格|厂家|用途|批发|生产|材质